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Abstract. The paper presents some modification of the idea of an evolution-
ary multi-agent system for multiobjective optimization, dealing simultaneously
with the stagnation of evolutionary process and the loss of agents representing
high-quality solutions. The main mechanisms proposed follow the idea of elitist
operators known from classical evolutionary algorithms, yet in this case the elite
does not take part in the evolutionary process. Some preliminary results based on
a typical multi-objective problem presenting the most important features of the
proposed approach are also discussed.

1 Introduction

In the previous papers devoted to the multiobjective optimization using evolutionary-
multi agent systems (EMAS) there have been presented promising results obtained for
different continuous and discrete problems [6, 5]. Moreover, it has been also shown that
the EMAS-based approach can be perceived as a very attractive alternative to “classical”
evolutionary algorithms for Pareto-optimization.

Unfortunately, experimental studies confirm that multiobjective EMAS, as many
other non-elitist multiobjective evolutionary techniques, during the process of evolu-
tion loses a lot of solutions belonging de facto to the final approximation of the Pareto
frontier. The introduction of elitist operators responsible for ensuring that the best in-
dividuals are directly carried over to next generations [2], obviously solves this prob-
lem, yet at the same time it augments another one. The EMAS-based approach, like
other algorithms utilizing directly the information about the domination relation, suf-
fers from the problem of stagnation, caused by lack of selective pressure in a population
consisting—with time—mostly of non-dominated solutions. Of course this is an unde-
sirable effect because it makes the possibility of discovering further solution(s) rather
limited. Additionally, in case of Pareto optimization, it results not only in lack of drift-
ing to the target frontier but also in obtaining its very limited approximation (in fact
rather its fragment(s)).

In the course of this paper some modification of EMAS-based approach dealing
simultaneously with the stagnation of evolutionary process and the loss of agents repre-
senting high-quality solutions is discussed. The system is called a semi-elitist evolution-
ary multi-agent system (selEMAS), because the main mechanisms proposed follow the
idea of elitist operators known from classical evolutionary algorithms, yet in this case

V.N. Alexandrov et al. (Eds.): ICCS 2006, Part III, LNCS 3993, pp. 831–838, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



832 L. Siwik and M. Kisiel-Dorohinicki

the elite does not take part in the evolutionary process. As it turns out, the approach can
be perceived as a compromise between gathering all non-dominated solutions found
by the algorithm in any generation and assuring that the population does not fall into
stagnation.

2 Evolutionary and Agent-Based Multiobjective Optimization

For most real-life decision problems a lot of different factors have to be considered,
and the decision maker often has to deal with an ambiguous situation: the solutions
which optimize one criterion may prove insufficiently good considering the others. In
such a situation it may be helpful to use a domination relation, which means that one
alternative is better than another one considering at least one criterion, and not worst
considering the others (so-called weak domination). A solution of the multiobjective
optimization problem in the Pareto sense means determination of all non-dominated
alternatives (so-called Pareto set) from the set of all feasible solutions.

For the last 20 years a variety of evolutionary multiobjective optimization algo-
rithms (EMOA) have been proposed [1, 4]. In Deb’s typology among the most important
and interesting methods there are distinguished [2]:

– elitist EMOAs—i.e. multiobjective evolutionary algorithms based on so-called elite-
preserving operators. These operators allow the elites of a population to be directly
carried over to the next generation (like in Rudolph’s algorithm, distance-based
Pareto GA, strength Pareto EA, thermodynamical GA, Pareto-archived evolution
strategy, multi-objective messy GA, multi-objective micro GA etc.),

– non-elitist EMOAs—i.e. multiobjective evolutionary algorithms which are focused
on emphasizing all non-dominated solutions in a population equally and simulta-
neously on preserving a diverse set of multiple non-dominated solutions without
exploiting the mechanism of elitism (e.g. vector evaluated GA, vector-optimized
evolution strategy, weight-based GA, random weighted GA, niched-pareto GA, or
distributed sharing GA).

The approach of evolutionary multi-agent systems is both similar as well as differ-
ent from classical evolutionary algorithms. The key idea of EMAS is the incorporation
of evolutionary processes into a multi-agent system at a population level [3]. It means,
that besides interaction mechanisms typical for agent-based systems (such as communi-
cation) agents are able to reproduce (generate new agents) and may die (be eliminated
from the system). A decisive factor of the agent’s activity is its fitness, expressed by
the amount of possessed non-renewable resource called life energy. Selection is real-
ized in such a way that agents with high energy are more likely to reproduce, whereas
a low level of energy increases their possibility of death. In fact, all decisions about
actions to be performed (including death and reproduction) are made autonomously by
agents, and thus EMAS may be considered as a computational technique utilizing a
decentralized model of evolution, unlike classical evolutionary computation. What is
more, since agents usually operate in some (virtual) space and their interactions (e.g.
selection) are limited to their close neighborhood, this model is also distributed like in
parallel evolutionary algorithms.
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In EMAS-based multiobjective optimization (in the Pareto sense) each agent repre-
sents a feasible solution to a given problem. By means of communication agents acquire
information, which allows for the determination of the domination relation with respect
to the others. Then dominated agents transfer a fixed amount of life energy to their dom-
inants. This way non-dominated agents (representing successive approximations of the
Pareto set) gain more life energy and reproduce, while dominated agents die [6].

3 Testing Problem and Comparison Criteria

The experimental results presented in the course of this paper are based on the so-called
MaxEx multi-objective problem, which is defined as follows:

MaxEx =

⎧
⎨

⎩

f1(x) = 1.1 − x1

f2(x) = 60 − 1+x2
x1

0.1 ≤ x1 ≤ 1 0 ≤ x2 ≤ 5

The Pareto frontier and the Pareto set of such two-objective problem can be rep-
resented as it is shown in fig. 1. As one may notice, it is a quite simple problem with
coherent Pareto frontier and Pareto set as well, which however has some interesting
properties (described precisely e.g. in [2]). For the sake of clarity, this target frontier
will be omitted in further figures presenting its approximations obtained by the ana-
lyzed algorithms.

a)

 52

 53

 54

 55

 56

 57

 58

 59

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

f2

f1 b)

 0
 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

x2

x1

Fig. 1. Visualization of the Pareto frontier (a) and the Pareto set (b) for MaxEx problem

In the literature there at least three criteria distinguishing good approximations of
Pareto frontiers can be found: the closeness to the target frontier (the closer the better),
the number of individuals belonging to the proposed approximation (the more the bet-
ter), and the dispersing of individuals over the whole frontier [2]. All these criteria will
be considered in the discussion below.

4 Towards a Semi-elitist Evolutionary Multi-agent System

Although EMAS-based approach has proved its usefulness for multiobjective optimiza-
tion, obviously there are still many features that could be improved. First of all, espe-
cially in case of simple problems, EMAS population sometimes falls into stagnation. In
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fig. 2a there are presented: the number of individuals belonging to the Pareto frontier
and the size of EMAS population in consecutive steps during solving MaxEx problem.
As one may see, after c.a. 500 steps of evolution the size of the population stabilizes.
There are two possibilities: either the number of agents with very low life energy level
(i.e. dying agents) is the same as the number of agents with very high level of resources
(i.e. reproducting agents), or there are no agents with very high or very low level of life
energy, and in consequence there are no reproducting or dying agents—which was con-
firmed during the experiments. This phenomenon may be explained analyzing the num-
ber of individuals belonging to the Pareto set. As it is confirmed in fig. 2a, with time,
the whole population consists of only nondominated individuals, and during agents’
meetings the condition responsible for the flow of energy (cf. section 2) is not fulfilled.
In consequence, the transfer of energy is lower and lower, until it disappears entirely.
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Fig. 2. Size of population and size of Pareto set for MaxEx problem obtained by a) EMAS- and
b) ’naive’ selEMAS-based algorithms in consecutive steps

Another feature of EMAS-based approach, undesirable especially in case of mul-
tiobjective optimization—but which is de facto a natural feature of every optimiza-
tion technique based on the evolution principle—is that during the evolution process
some valuable solutions can be (and are in fact) irreparably lost. In singleobjective op-
timization it is not so dangerous if still the algorithm is able to find at last the global
optimum—however in case of multiobjective optimization—because in most cases the
algorithm should find as many nondominated solutions as it is possible—some mech-
anisms responsible for storing any found nondominated alternatives (of course as long
as they are still nondominated) could be introduced. Fig. 2b presents the size of the
population and the number of individuals belonging to the Pareto frontier for the first,
naive modification of EMAS. In this case an additional, special island (so-called elitist
island) was introduced to the system. The best individuals (that can be perceived as the
elite of the agents’ society) were to migrate to this island. Because there are only com-
ing in paths to the elitist island, such mechanism should solve the problem with losing
valuable alternatives during the process of evolution.

Of course the question appears, which agents can migrate to the elitist island. One
of at least several possibilities, consists in utilizing the information about domination
relation discovered during the meetings. It may be assumed that the agents that prove
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better than at least n other agents constitute the elite, and can migrate to the elitist island.
Unfortunately, such approach does not guarantee a proper behavior of the system. As it
is shown in fig. 2b, migration of individuals from an ordinary island to the elitist one
causes dying out the ordinary population. As one may see, starting from 100 individuals
the size of population drops down and stabilizes at a level of 40 evolving agents. Even
though the system is able to find more nondominated solutions than the population size,
there is still the problem with disappearing life energy transfer. In consequence, even
faster than in the previous case, all (or almost all) members of population become non-
dominated and there are no dying or reproducting agents—so, the process of evolution
de facto does not take place. To solve this problem the further modification has been
proposed: in place of each migrating elitist agent another one is created, but to avoid
the premature convergence of the population on the one hand but, simultaneously, to
follow to the direction determined by migrating elitist agent on the other hand—the
created individual is its mutated clone.

5 Experimental Studies

In fig. 3 there are presented subsequent approximations of the Pareto frontier for our
testing MaxEx problem obtained by EMAS- and selEMAS (i.e. semi-elitist evolutionary
multi-agent system)-based optimization after 1, 30, 500 and 1500 steps.

As one may see all the frontiers obtained by both approaches are very similar, both
initially (after 1 and 30 steps), but also after 1000 and 1500 steps, if the distance to
the target frontier and dispersing over the whole frontier are considered. However, if
the number of found nondominated individuals is considered, initially EMAS-based
technique is better but with time selEMAS-based frontier is much more numerous. It
seems thus that introducing semi-elitism into EMAS, allows for obtaining frontiers,
which are not worse regarding the closeness to the target frontier and even dispersing
of nondominated individuals over the whole frontier and is strongly better regarding the
number of found Pareto-optimal solutions.

Of course it is difficult to reliably compare the considered approaches relying on
charts representing consecutive approximations of the Pareto frontier. That is why in
fig. 4 there are presented some characteristics allowing for deeper analysis of the ob-
tained results. In fig. 4a the number of individuals belonging to the obtained EMAS-
and selEMAS-based Pareto frontiers in consecutive steps of the system run are pre-
sented. Initially, there are more individuals belonging to the Pareto frontier in the case
of EMAS-based optimization. However after ca. 500 steps selEMAS-based frontier be-
comes more numerous than the EMAS-based one. Additionally in fig. 4a the number
of individuals belonging to the EMAS and selEMAS population are also presented. Be-
cause (without any additional mechanisms) these approaches do not guarantee a fixed
size of the population, it could occur that the increasing number of individuals belong-
ing to the Pareto frontier results from increasing of the population size, however the
presented characteristic shows that it is not true. Moreover, as one may see, selEMAS-
based population is not as numerous as the EMAS-based one, and nevertheless selE-
MAS is able to obtain more numerous frontier.
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Fig. 3. Pareto frontier approximations for MaxEx problem obtained by EMAS and selEMAS after
a) 1, b) 30, c) 500 and d) 1500 steps

In fig. 4b there is presented another very important profile i.e. the distance to the
target solution. As one may see, this chart confirms which was observed in fig. 3—the
distance to the target Pareto frontier obtained by both algorithms is very similar.

Figures 4c and 4d show the diversity of individuals belonging to the obtained Pareto
sets. The especially important in this context characteristic is presented in fig. 4c, be-
cause the diversity in the space of x1 decision variable ensures (in the case of MaxEx
problem) dispersing individuals over the whole Pareto set. So, analyzing these charts, it
seems that EMAS focuses firstly on drifting to the target frontier, and during this process
diversity is being gradually improved, whereas selEMAS keeps the diversity on almost
the same level from the very beginning until the end of evolution process—which of
course seems to be more desirable especially in such situations when the process of
evolutions does not last 1500 steps but is much shorter.

It is worth in this place to analyze the influence of introduced semi-elitist mecha-
nisms not only on the diversity of the obtained Pareto set but also on diversity of the
whole population. Such profiles are presented in fig. 5a and fig. 5b. Of course because
of specific features of MaxEx problem the more important is the diversity in the x1

decision variable space. And as one may see, starting from the same level of the diver-
sity, selEMAS population almost immediately becomes much more dispersed and this
remains until the end of the evolution process.

At last one may ask the question—what is the influence of introduced mechanisms if
the real computation time is considered. Yet it occurs that selEMAS-based optimization
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Fig. 4. Characteristics of obtained selEMAS-based Pareto frontier approximations: the number of
solutions in the frontiers (a), average distance to the model frontier (b), the diversity of solutions
in the frontier for x1 (c) and x2 (d) decision variable

a)
 0.2

 0.21

 0.22

 0.23

 0.24

 0.25

 0.26

 0.27

 0.28

 0.29

 0.3

 0.31

 0  200  400  600  800  1000  1200  1400  1600

di
ve

rs
ity

consecutive steps

diversity of selEMAS population
diversity of EMAS population’

b)
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0  200  400  600  800  1000  1200  1400  1600

di
ve

rs
ity

consecutive steps

diversity of selEMAS population
diversity of EMAS population’

Fig. 5. Further characteristics of obtained Pareto frontier approximations: the diversity of popu-
lations for x1 (a) and x2 (b) decision variable

in spite of the introduced additional mechanisms is not slower, it seems to be even
faster than the EMAS-based one. Performing 1500 steps of evolution starting from the
population of 100 agents solving MaxEx problem took c.a. 300ms for EMAS and c.a.
220ms for selEMAS1. Why in spite of the additional mechanisms selEMAS is faster
in absolute time horizon? The answer brings fig. 4a: because during almost the whole
evolution process the size of selEMAS population is significantly lower (by c.a. 20%)
than the size of EMAS population.

1 Computations have been performed on PC with 512MB RAM and PIII 800MHz processor.
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6 Concluding Remarks

Recapitulating, it can be said that introducing semi-elitism into EMAS allows—in case
of MaxEx problem—for obtaining Pareto sets that is not worse than the EMAS-based
ones if the distance to the model frontier is considered and that is even significantly
better if other characteristics are considered.

Further research will focus on the deeper analysis of the elitist operators for EMAS
for various testing problems. Interesting results may be obtained when the elite will
be given an opportunity to influence the evolution process on ordinary islands, thus
a shift from semi-elitism to elitism is foreseen to be the important step ahead in the
development of the idea of multiobjective EMAS.
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